Resolución de triángulos rectángulos, ejercicios resueltos

Este es una lista de ejercicios de ejemplos donde se aplican las razones trigonométricas conocidas en clases para resolver los lados y ángulos de un triángulo rectángulo:

Ejemplo 1

De un triángulo rectángulo ABC, se conocen los lados a = 5 m y el ángulo B = 41.7°. Resolver el triángulo.


Primero sabiendo que la suma de los ángulos internos de un triángulo suman 180 grados, sustituimos los ángulos conocidos y despejamos el ángulo C, quedando así:

  
Conocemos al lado a, planteamos el seno de B como lado b (cateto opuesto) sobre lado a (hipotenusa), sustituimos el valor de a y despejamos el lado b, así:


Conocemos al lado a, planteamos el Coseno de B como lado c (cateto adyacente) sobre lado a (hipotenusa), sustituimos el valor de a y despejamos el lado c, así:



Ejemplo 2

De un triángulo rectángulo ABC, se conocen a = 6 m y b = 4 m. Resolver el triángulo.




Sabemos que seno de C es cateto opuesto (lado c) entre la hipotenusa (lado a), planteamos la fórmula, despejamos a c y sustituimos los valores de a y el seno de C =48 grados 19 minutos.



2 comentarios:

Pedro Font 13 de febrero de 2016, 2:55  

Por si puede ser de su interés o de alguno de sus lectores, le dejo un enlace a un resolutor de problemas de triángulos rectángulos.
Saludos.
Pedro Font

http://informatica-pfont.blogspot.com/2016/02/resolver-triangulos-rectangulos.html

KaroVlogs 1D 6 de abril de 2016, 18:29  

Gracia Profe

Publicar un comentario en la entrada

Mi blog de tecnología

Con la tecnología de Blogger.

Mas Leídos

Acerca de este Blog

Este Blog es personal y de ninguna manera representa el criterio ni la opinión de ninguna institución u organización, se presenta como una posibilidad de extender y apoyar los conocimientos de los estudiantes en la asignatura Matemáticas. El material aquí publicado es de libre acceso en Internet por lo que no se expone material de autores sin su consentimiento o aprobación, a no ser vínculos o videos compartidos públicamente en las redes sociales o la web o de licencia Creative Common.