Décimo grado: Ejercicios Reducción de ángulos al primer cuadrante

Comos sabemos, dado un ángulo en cualquier cuadrante es posible encontrar el ángulo de referencia del mismo.El ángulo de Referencia o correspondiente en el primer cuadrante a un ángulo A, se define como el ángulo agudo que se forma entre el lado terminal del angulo A y el lado más próximo en el eje X.

Las formulas para deducir el ángulo de Referencia dependiendo del cuadrante se calculan como sigue:



Ejercicios Resueltos de cálculo de funciones trigonométricas utilizando el ángulo de Referencia:

Dado el ángulo 215º reducirlo al primer cuadrante:

SOLUCIÓN: 

El ángulo 215º se encuentra en el tercer cuadrante. Este ángulo de referencia B se calcula:
B= 215º - 180º = 35º , tenemos entonces analizando los signos de las funciones en el IV cuadrante:
sen 215º = - sen 35º; 
cos 215º = - cos 35º; 
tg 215º = tg 35º

Dados los ángulos 235º, 278,45º, 133,5º reducirlos al primer cuadrante
SOLUCIÓN:

A=235º esta en el tercer cuadrante luego:
(angulo de referencia) B= 235º- 180º = 55º

A=278.45º esta en el cuarto cuadrante luego:
(angulo de referencia) B= 360º - 278,45º = 81,55º

A=133,5º esta en el segundo cuadrante luego:
(angulo de referencia) B= 180º - 133,5º = 46,5º


Dado el ángulo 330º reducirlo al primer cuadrante

SOLUCIÓN: 

El ángulo 330º se encuentra en el cuarto cuadrante. Este ángulo viene representado por el mismo radio vector que el ángulo -30º, pues
Angulo de referencia IV cuadrante B = 360º -300º = 30º
Tenemos entonces:
sen 330º = sen (-30º) = - sen 30º 
cos 330º = cos (-30º) = cos 30º
tg 330º = tg ( -30º) = - tg 30º

0 comentarios:

Publicar un comentario

Mi blog de tecnología

Con la tecnología de Blogger.

Mas Leídos

Acerca de este Blog

Este Blog es personal y de ninguna manera representa el criterio ni la opinión de ninguna institución u organización, se presenta como una posibilidad de extender y apoyar los conocimientos de los estudiantes en la asignatura Matemáticas. El material aquí publicado es de libre acceso en Internet por lo que no se expone material de autores sin su consentimiento o aprobación, a no ser vínculos o videos compartidos públicamente en las redes sociales o la web o de licencia Creative Common.